Local Feature Based on Moment Invariants for Blurred Image Matching

نویسندگان

  • Qiang Tong
  • Terumasa Aoki
چکیده

This paper presents a new local feature scheme for image matching between a strongly blurred image and a non-blurred image. In recent years, a lot of local feature schemes have been proposed to improve the image matching performances. However, as far as the authors know, there are no local features which are robust to strong blur. In this paper, blur moment invariants are introduced into a local feature scheme. These blur moment invariants are robust to strong blur when they are used as global features. However, they cannot be used as a local feature. In this paper, we dig into this problem and clarify the reason why they cannot be used as a local feature. After that, we propose a new local feature scheme based on this study. Experimental results show that the proposed scheme is more effective and suitable for blurred image matching than any other existing local feature schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach of Local Feature Descriptors using moment Invariants

Moment invariants have been widely introduced in recognizing planar objects for a few decades. This is due the robustness of moment function in distinguishing the original identity of object under various two Dimensional (2D) transformations. A set of moments computed from a planar images, represents the global description of an object’s shape and geometrical features of an image. Since global ...

متن کامل

Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching

Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...

متن کامل

Adaptive K-Means Clustering For Improving Non- Local Means Filtering

Recording devices whether analog or digital, have traits which make them susceptible to noise. In selecting a noise reduction algorithm, one must weigh several factors. Image denoising is defined as a method to recover a true image from an observed noisy image and is applied in display systems to improve the quality of image. One of the popular denoising methods, NLM, produces the quality of im...

متن کامل

Moment Invariants in Image Analysis

This paper aims to present a survey of object recognition/classification methods based on image moments. We review various types of moments (geometric moments, complex moments) and moment-based invariants with respect to various image degradations and distortions (rotation, scaling, affine transform, image blurring, etc.) which can be used as shape descriptors for classification. We explain a g...

متن کامل

Fingerprint Recognition Using Zernike Moments

In this paper, we present a fingerprint matching approach based on localizing the matching regions in fingerprint images. The determination of the location of such Region Of Interest (ROI) using only the information related to core points based on a novel feature vectors extracted for each fingerprint image by Zernike Moment Invariant (ZMI) as the shape descriptor. The Zernike Moments is select...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014